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On Davies’ conjecture and strong ratio limit

properties for the heat kernel

Yehuda Pinchover

Abstract.

We study strong ratio limit properties and the exact long time
asymptotics of the heat kernel of a general second-order parabolic
operator which is defined on a noncompact Riemannian manifold.

§1. Introduction

Let P be a linear, second-order, elliptic operator defined on a non-
compact, connected, C3-smooth Riemannian manifold M of dimen-
sion d with a Riemannian measure dx. Here P is an elliptic operator
with real, Hölder continuous coefficients which in any coordinate system
(U ; x1, . . . , xd) has the form

P (x, ∂x) = −
d

∑

i,j=1

aij(x)∂i∂j +
d

∑

i=1

bi(x)∂i + c(x).

We assume that for each x ∈ M the real quadratic form
∑d

i,j=1aij(x)ξiξj

is positive definite. The formal adjoint of P is denoted by P ∗. Denote
the cone of all positive (classical) solutions of the equation Pu=0 in M
by CP (M). The generalized principal eigenvalue is defined by

λ0 = λ0(P,M) := sup{λ ∈ R : CP−λ(M) 6= ∅}.

Throughout this paper we always assume that λ0 ≥ 0 (actually, as it
will become clear below, it is enough to assume that λ0 > −∞).
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We consider the parabolic operator L

(1.1) Lu = ut + Pu on M× (0,∞).

We denote by HP (M×(a, b)) the cone of all nonnegative solutions of the
equation Lu = 0 in M×(a, b). Let kM

P (x, y, t) be the minimal (positive)
heat kernel of the parabolic operator L in M. If for some x 6= y

∫ ∞

0

kM
P (x, y, τ) dτ < ∞

(

respect.,

∫ ∞

0

kM
P (x, y, τ) dτ = ∞

)

,

then P is said to be a subcritical (respect., critical) operator in M [18].
Recall that if λ<λ0, then P−λ is subcritical in M, and for λ ≤ λ0, we

have kM
P−λ(x, y, t) = eλtkM

P (x, y, t). Furthermore, P is critical (respect.,
subcritical) in M, if and only if P ∗ is critical (respect., subcritical) in
M. If P is critical in M, then there exists a unique positive solution
ϕ ∈ CP (M) satisfying ϕ(x0) = 1, where x0 ∈ M is a fixed reference
point. This solution is called the ground state of the operator P in M
[15, 18]. The ground state of P ∗ is denoted by ϕ∗. A critical operator
P is said to be positive-critical in M if ϕ∗ϕ ∈ L1(M), and null-critical
in M if ϕ∗ϕ 6∈ L1(M). In [15, 17] we proved:

Theorem 1.1. Let x, y ∈ M. Then

lim
t→∞

eλ0tkM
P (x, y, t)=











ϕ(x)ϕ∗(y)
∫

M
ϕ(z)ϕ∗(z) dz

if P−λ0 is positive-critical,

0 otherwise.

Furthermore, for λ < λ0, let GM
P−λ(x, y) :=

∫ ∞

0
kM

P−λ(x, y, τ)dτ be the
minimal (positive) Green function of the operator P−λ on M. Then

(1.2) lim
t→∞

eλ0tkM
P (x, y, t) = lim

λ↗λ0

(λ0 − λ)GM
P−λ(x, y).

Having proved that limt→∞ eλ0tkM
P (x, y, t) always exists, we next

ask how fast this limit is approached. It is natural to conjecture that
the limit is approached equally fast for different points x, y ∈ M. Note
that in the context of Markov chains, such an (individual) strong ratio
limit property is in general not true [5]. The following conjecture was
raised by E. B. Davies [7] in the selfadjoint case.

Conjecture 1.1. Let Lu = ut + P (x, ∂x)u be a parabolic operator
which is defined on a Riemannian manifold M. Fix a reference point
x0 ∈ M. Then

(1.3) lim
t→∞

kM
P (x, y, t)

kM
P (x0, x0, t)

= a(x, y)
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exists and is positive for all x, y ∈ M.

The aim of the present paper is to discuss Conjecture 1.1 and closely
related problems, and to obtain some results under minimal assump-
tions.

Remark 1.1. Theorem 1.1 implies that Conjecture 1.1 holds true in
the positive-critical case. So, we may assume in the sequel that P is not

positive critical. Also, Conjecture 1.1 does not depend on the value
of λ0, hence from now on, we shall assume that λ0 = 0.

Remark 1.2. In the selfadjoint case, Conjecture 1.1 holds true if
dim CP (M) = 1 [2, Corollary 2.7]. In particular, it holds true for a
critical selfadjoint operator. Therefore, it would be interesting to prove
Conjecture 1.1 at least under the assumption

(1.4) dim CP (M) = dim CP∗(M) = 1,

which holds true in the critical case and in many important subcriti-
cal cases. Recently, Agmon [1] has obtained the exact asymptotics (in
(x, y, t)) of the heat kernel for a periodic (non-selfadjoint) operator on
Rd. It follows from Agmon’s results that Conjecture 1.1 holds true in
this case. For a probabilistic interpretation of Conjecture 1.1, see [2].

Remark 1.3. Let tn → ∞. By a standard parabolic argument, we
may extract a subsequence {tnk

} such that for every x, y ∈ M and s < 0

(1.5) a(x, y, s) := lim
k→∞

kM
P (x, y, s + tnk

)

kM
P (x0, y0, tnk

)

exists. Moreover, a(·, y, ·) ∈ HP (M× R−). Note that in the selfadjoint
case, the above is valid for all s ∈ R, since (2.7) holds in selfadjoint case
[7, Theorem 10].

Remark 1.4. The example constructed in [16, Section 4] shows a
case where Conjecture 1.1 holds true on M, while the limit function
a(x, y) = 1 is not a λ0-invariant positive solution. Compare this with
[7, Theorem 25] and the discussion therein above Lemma 26. Note also
that in general, the limit function a(x, y) in (1.3) need not be a product
of solutions of the equations Pu = 0 and P ∗u = 0, as is demonstrated
in [6], in the hyperbolic space, and in Example 4.2.

The outline of the rest of paper is as follows. In the next section we
study the existence of the strong ratio limit for the heat kernel. It turns
out that if this limit exists, then it equals 1. This implies that any limit
solution u(·, y, s) of (1.5) is time independent and is a positive solution
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of the equation Pu = 0 in M. In Section 3 we discuss the relationship
between Conjecture 1.1 and the parabolic Martin compactification of
HP (M × R−), while in Section 4 we study the relation between this
conjecture and the parabolic and elliptic minimal Martin boundaries.
Finally, in Section 5 we study Conjecture 1.1 under the assumption that
the uniform restricted parabolic Harnack inequality holds true.

The author wishes to express his gratitude for the referee’s careful
reading and valuable comments.

§2. Strong ratio properties

In the symmetric case the function t 7→ kM
P (x, x, t) is log-convex, and

therefore, a polarization argument implies that limt→∞
kM

P
(x,y,t+s)

kM
P

(x,y,t)
= 1

for all x, y ∈ M and s ∈ R [7]. In the nonsymmetric case we have:

Lemma 2.1. For every x, y ∈ M and s ∈ R, we have that

(2.1) lim inf
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 ≤ lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

.

Similarly, for any s > 0

(2.2) lim inf
n→∞

kM
P (x, y, (n±1)s)

kM
P (x, y, ns)

≤ 1 ≤ lim sup
n→∞

kM
P (x, y, (n±1)s)

kM
P (x, y, ns)

.

In particular, if limt→∞[kM
P (x, y, t+s)/kM

P (x, y, t)] exists, it equals to 1.

Proof. We may assume that P is not positive-critical. Let s < 0.
By Theorem 1.1 and the parabolic Harnack inequality we have

(2.3) 1 ≤ lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ C(s, y).

Suppose that lim inf t→∞
kM

P
(x,y,t+s)

kM

P
(x,y,t)

= ` > 1. It follows that there exists

0 < q < 1 and Ts > 0 such that

kM
P (x, y, t) < qkM

P (x, y, t + s) ∀ t > Ts.

By induction and the Harnack inequality, we obtain that there exist µ <
0 and C > 0 such that kM

P (x, y, t) < Ceµt for all t > 1, a contradiction
to the assumption λ0 =0. Therefore, (2.1) is proved for s < 0, which in
turn implies (2.1) also for s > 0. (2.2) can be proven similarly. �

Remark 2.1. The condition lim inf t→∞
kM

P
(x,y,t+s)

kM

P
(x,y,t)

≥ 1 for s > 0 is

sometimes called Lin’s condition [11].
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Corollary 2.1. Let x, y ∈ M. Suppose that

(2.4) lim
n→∞

kM
P (x, y, (n + 1)s)

kM
P (x, y, ns)

exists for every s > 0 (i.e., the ratio limit exists for every “skeleton”
sequence of the form tn = ns, where n = 1, 2, . . . and s > 0). Then

(2.5) lim
t→∞

kM
P (x, y, t + r)

kM
P (x, y, t)

= 1 ∀r ∈ R.

Proof. By Lemma 2.1, the limit in (2.4) equals 1. By induction,

limn→∞
kM

P
(x,y,ns+r)

kM

P
(x,y,ns)

= 1, where r = qs, and q ∈Q, which (by the conti-

nuity of a limiting solution) implies that it holds for ∀r∈R. Hence, [9,
Theorem 2] implies (2.5). �

Remark 2.2. If there exist x0, y0 ∈ M and 0 < s0 < 1 such that

(2.6) M(x0, y0, s0) := lim sup
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

< ∞,

then by the parabolic Harnack inequality, for all x, y, z, w ∈ K ⊂⊂ M,
t > 1, we have the following Harnack inequality of elliptic type:

kM
P (z, w, t)≤C1k

M
P (x0, y0, t+

s0

2
)≤C2k

M
P (x0, y0, t−

s0

2
)≤C3k

M
P (x, y, t).

Similarly, (2.6) implies that for all x, y ∈ M and r ∈ R:

0 < m(x, y, r) := lim inf
t→∞

kM
P (x, y, t + r)

kM
P (x0, y0, t)

≤

lim sup
t→∞

kM
P (x, y, t + r)

kM
P (x0, y0, t)

= M(x, y, r) < ∞.(2.7)

Lemma 2.2. (a) The following assertions are equivalent:
(i) For each x, y ∈ M there exists a sequence sj → 0 of negative

numbers such that for all j ≥ 1, and s = sj , we have

(2.8) lim
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

= 1.

(ii) The ratio limit in (2.8) exists for any x, y ∈ M and s ∈ R.

(iii) Any limit function u(x, y, s) of the quotients
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)
with

tn →∞ does not depend on s and has the form u(x, y), where u(·, y)∈
CP (M) for every y∈M and u(x, ·)∈CP∗(M) for every x∈M.

(b) If one assumes further (1.4), then Conjecture 1.1 holds true.
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Proof. (a) By Lemma 2.1, if the limit in (2.8) exists, then it is 1.
(i) ⇒ (ii). Fix x0, y0 ∈ M, and take s0 < 0 for which the limit (2.8)

exists. It follows that any limit solution u(x, y, s) ∈ HP (M× R−) of a

sequence
kM

P
(x,y,tn+s)

kM
P

(x0,y0,tn)
with tn → ∞ satisfies u(x0, y0, s+s0)=u(x0, y0, s)

for all s<0. So, u(x0, y0, ·) is s0-periodic. It follow from our assumption
and the continuity of u that u(x0, y0, ·) is the constant function. Since
this holds for all x, y ∈ M and u, it follows that (2.8) holds for any
x, y∈M and s∈R.

(ii) ⇒ (iii). Fix y ∈ M. By Remark 1.3, any limit function u of the

sequence
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)
with tn → ∞ belongs to HP (M× R−). Since

(2.9)
kM

P (x, y, t + s)

kM
P (x0, x0, t)

=
kM

P (x, y, t)

kM
P (x0, x0, t)

kM
P (x, y, t + s)

kM
P (x, y, t)

,

(2.8) implies that such a u does not depend on s. Therefore, u = u(x, y),
where u(·, y) ∈ CP (M) and u(x, ·) ∈ CP∗(M).

(iii) ⇒ (i). Write

(2.10)
kM

P (x, y, t + s)

kM
P (x, y, t)

=
kM

P (x, y, t + s)

kM
P (x0, x0, t)

kM
P (x0, x0, t)

kM
P (x, y, t)

.

Let tn → ∞ be a sequence such that the sequence
kM

P
(x,y,tn+s)

kM

P
(x0,x0,tn)

converges

to a solution in HP (M× R−). By our assumption, we have

lim
n→∞

kM
P (x, y, tn + s)

kM
P (x0, x0, tn)

= lim
n→∞

kM
P (x, y, tn)

kM
P (x0, x0, tn)

= u(x, y) > 0,

which together with (2.10) implies (2.8) for all s ∈ R.

(b) The uniqueness and (iii) imply that
kM

P
(x,y,t+s)

kM

P
(x0,x0,t)

→ u(x)u∗(y)
u(x0)u∗(x0)

, where

u∈CP (M) and u∗∈CP∗(M), and Conjecture 1.1 holds. �

Remark 2.3. Let M $ Rd be a smooth domain and P and P ∗ be
(up to the boundary) smooth operators. Denote by C0

P (M) the cone of
all functions in CP (M) which vanish on ∂M. Suppose that one of the
conditions (i)–(iii) of Lemma 2.2 is satisfied. Clearly, for any fixed y
any limit function u(·, y) of Lemma 2.2 belongs to the Martin boundary
‘at infinity’ which in this case is C0

P (M). Therefore, Conjecture 1.1
holds true if the Martin boundaries ‘at infinity’ of P and P ∗ are one-
dimensional. As a simple example, take P = −∆ and M = Rd

+.
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Lemma 2.3. Suppose that P is null-critical, and for each x, y ∈ M
there exists a sequence {sj} of negative numbers such that sj → 0, and

(2.11) lim inf
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≥ 1

for s = sj , j = 1, 2, . . . . Then Conjecture 1.1 holds true.

Proof. Let u(x, y, s) be a limit function of a sequence
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)

with tn → ∞ and s < 0. By our assumption, u(x, y, s + sj) ≥ u(x, y, s),
and therefore, us(x, y, s) ≤ 0 for all s < 0. Thus, u(·, y, s) (respect.,
u(x, ·, s)) is a positive supersolution of the equation Pu = 0 (respect.,
P ∗u = 0) in M. Since P is critical, it follows that u(·, y, s) ∈ CP (M)
(respect., u(x, ·, s) ∈ CP∗(M)), and hence us(x, y, s) = 0. By the unique-

ness, u equals to ϕ(x)ϕ∗(y)
ϕ(x0)ϕ∗(x0)

, and Conjecture 1.1 holds true. �

Remark 2.4. Suppose that P is null-critical, and fix x0 6= y0. Then
using Theorem 1.1 and [14, Theorem 2.1] we have for x 6= y:

(i) lim
t→∞

kM
P (x, y, t) = lim

t→∞
kM

P (x0, y0, t) = 0,

(ii)

∫ ∞

0

kM
P (x, y, τ) dτ =

∫ ∞

0

kM
P (x0, y0, τ) dτ = ∞,

(iii) lim
λ↗0

∫ ∞

0
eλτkM

P (x, y, τ)dτ
∫ ∞

0
eλτkM

P (x0, y0, τ)dτ
= lim

λ↗0

GM
P−λ(x, y)

GM
P−λ(x0, y0)

=
ϕ(x)ϕ∗(y)

ϕ(x0)ϕ∗(y0)
.

Therefore, Conjecture 1.1 would follow from a strong ratio Tauberian
theorem if additional Tauberian conditions are satisfied (see, [3, 19]).

§3. The parabolic Martin boundary

The large time behavior of quotients of the heat kernel is obviously
closely related to the parabolic Martin boundary (for the parabolic Mar-
tin boundary theory see [8]). Theorem 3.1 relates Conjecture 1.1 and
the parabolic Martin compactification of HP (M× R−).

Lemma 3.1. Fix y ∈ M. The following assertions are equivalent:
(i) For each x ∈ M there exists a sequence sj → 0 of negative

numbers such that

(3.1) lim
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

exists for s = sj , j = 1, 2, . . . .
(ii) Any parabolic Martin function in HP (M × R−) corresponding

to a Martin sequence {(y,−tn)}∞n=1, where tn→∞, is time independent.
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Proof. Let KM
P (x, y, s) = limn→∞

kM

P
(x,y,tn+s)

kM

P
(x0,y,tn)

be such a Martin

function. The lemma follows from the identity

kM
P (x, y, tn + s)

kM
P (x0, y, tn)

=
kM

P (x, y, tn + s)

kM
P (x, y, tn)

kM
P (x, y, tn)

kM
P (x0, y, tn)

,

and Lemma 2.2. �

Theorem 3.1. Assume that (2.6) holds true for some x0, y0 ∈ M,
and s0 > 0. Then the following assertions are equivalent:

(i) Conjecture 1.1 holds true for a fixed x0 ∈ M.
(ii)

(3.2) lim
t→∞

kM
P (x, y, t)

kM
P (x1, y1, t)

exists, and the limit is positive for every x, y, x1, y1 ∈ M.
(iii)

(3.3) lim
t→∞

kM
P (x, y, t)

kM
P (y, y, t)

, and lim
t→∞

kM
P (x, y, t)

kM
P (x, x, t)

exist, and these ratio limits are positive for every x, y ∈ M.
(iv) For any y ∈ M there is a unique nonzero parabolic Martin

boundary point ȳ for the equation Lu = 0 in M× R which corresponds
to any sequence of the form {(y,−tn)}∞n=1 such that tn → ∞, and for
any x ∈ M there is a unique nonzero parabolic Martin boundary point
x̄ for the equation ut + P ∗u = 0 in M × R which corresponds to any
sequence of the form {(x,−tn)}∞n=1 such that tn → ∞.

Moreover, if Conjecture 1.1 holds true, then for any fixed y ∈ M
(respect., x ∈ M), the limit function a(·, y) (respect., a(x, ·)) is a positive
solution of the equation Pu = 0 (respect., P ∗u = 0). Furthermore, the
Martin functions of part (iv) are time independent, and (2.8) holds for
all x, y ∈ M and s ∈ R.

Proof. (i) ⇒ (ii) follows from the identity

kM
P (x, y, t)

kM
P (x1, y1, t)

=
kM

P (x, y, t)

kM
P (x0, x0, t)

·

(

kM
P (x1, y1, t)

kM
P (x0, x0, t)

)−1

.

(ii) ⇒ (iii). Take x1 = y1 = y and x1 = y1 = x, respectively.
(iii) ⇒ (iv). It is well known that the Martin compactification does

not depend on the fixed reference point x0. So, fix y ∈ M and take it
also as a reference point. Let {−tn} be a sequence such that tn → ∞
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and such that the Martin sequence
kM

P
(x,y,t+tn)

kM

P
(y,y,tn)

converges to a Martin

function KM
P (x, ȳ, t). By our assumption, for any t we have

lim
n→∞

kM
P (x, y, t + tn)

kM
P (y, y, t + tn)

= lim
τ→∞

kM
P (x, y, τ)

kM
P (y, y, τ)

= b(x) > 0,

where b does not depend on the sequence {−tn}. On the other hand,

lim
n→∞

kM
P (y, y, t + tn)

kM
P (y, y, tn)

= KM
P (y, ȳ, t) = f(t).

Since

kM
P (x, y, t + tn)

kM
P (y, y, tn)

=
kM

P (x, y, t + tn)

kM
P (y, y, t + tn)

·
kM

P (y, y, t + tn)

kM
P (y, y, tn)

,

we have

KM
P (x, ȳ, t) = b(x)f(t).

By separation of variables, there exists a constant λ such that

Pb − λb = 0 on M, f ′ + λf = 0 on R, f(0) = 1.

Since b does not depend on the sequence {−tn}, it follows in particular,

that λ does not depend on this sequence. Thus, limτ→∞
kM

P
(y,y,t+τ)

kM

P
(y,y,τ)

=

f(t) = e−λt. Lemma 2.1 implies that λ = 0. It follows that b is a positive
solution of the equation Pu = 0, and

(3.4) KM
P (x, ȳ, t) = lim

τ→−∞

kM
P (x, y, t − τ)

kM
P (y, y,−τ)

= b(x).

The dual assertion can be proved similarly.
(iv) ⇒ (i). Let KM

P (x, ȳ, t) be a Martin function, and s0 > 0 such
that KM

P (x0, ȳ, s0/2) > 0. Consequently, KM
P (x, ȳ, s) > 0 for s ≥ s0.

Using the substitution τ = s + s0 we obtain

lim
τ→∞

kM
P (x, y, τ)

kM
P (x0, x0, τ)

= lim
s→∞

{

kM
P (x, y, s + s0)

kM
P (y, y, s)

×

kM
P (y, y, s)

kM
P (x0, y, s+2s0)

kM
P (x0, y, s+2s0)

kM
P (x0, x0, s+s0)

}

=
KM

P (x, ȳ, s0)K
M
P∗(x0, y, s0)

KM
P (x0, ȳ, 2s0)

.

The last assertion of the theorem follows from (3.4) and Lemma 2.2. �
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§4. Minimal positive solutions

In this section we discuss the relation between Conjecture 1.1 and
the parabolic and elliptic minimal Martin boundaries.

Remark 4.1. By the parabolic Harnack inequality for P ∗, we have
for each 0 < ε < 1

(4.1) kM
P (x, y0, t − ε) ≤ C(y0, ε)k

M
P (x, y0, t) ∀x ∈ M, t > 1.

Therefore, if {(y0, tn)} is a nontrivial minimal Martin sequence with
tn → −∞, then one infers as in [10] that the corresponding minimal
parabolic function in HP (M×R−) is of the form u(x, t) = e−λtuλ(x, y0)
with λ ≤ 0 and uλ ∈ exrCP−λ(M), where exrC is the set of extreme
rays of a cone C. If further, for some x0 ∈ M and s < 0 one has

(4.2) lim inf
t→∞

kM
P (x0, y0, t + s)

kM
P (x0, y0, t)

≥ 1,

then λ = 0, and consequently, u is also a minimal solution in CP (M).
Recall that in the selfadjoint case, the ratio limit in (4.2) equals 1.

Lemma 4.1. Suppose that the ratio limit in (2.8) exists for all x, y ∈

M and s ∈ R. Let a(x, y) := limn→∞
kM

P
(x,y,tn+s)

kM

P
(x0,x0,tn)

, where tn →∞. If

for some y0 ∈ M the function u(x) := a(x, y0) is minimal in CP (M),
then a(x, y) = u(x)v(y), where v ∈ CP∗(M).

Proof. Fix y ∈ M and ε > 0. By the parabolic Harnack inequality
for P ∗ and Lemma 2.2, we have

(4.3)
kM

P (x, y, t − ε)

kM
P (x0, x0, t)

≤ C(y, ε)
kM

P (x, y0, t)

kM
P (x0, x0, t)

∀x ∈ M.

Therefore, a(x, y) ≤ C(y)u(x) which implies the claim. �

The following examples demonstrate that if Conjecture 1.1 holds true
while (1.4) does not hold, then the limit function a(·, y) is typically a
non-minimal solution in CP (M).

Example 4.1. Consider a (regular) Benedicks domain M⊆Rd such
that the cone of positive harmonic functions which vanish on ∂M is of
dimension two. By [6], Conjecture 1.1 holds true in this case, the limit
function is not a product of two (separated) harmonic functions, and
therefore, a(·, y) is not minimal in C−∆(M) for any y ∈ M.
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Example 4.2. Consider a radially symmetric Schrödinger operator
H :=−∆+V (|x|) on Rd with a bounded potential. Suppose that λ0 = 0,
and that the Martin boundary of H on Rd is homeomorphic to Sd−1

(see [12]). Clearly, any Martin function corresponding to {(y0, tn)} with
x0 =y0 =0 is radially symmetric. It follows that Davies’ conjecture holds
true for x0 =y=0, and the limit function is the normalized positive radial
solution in CH(Rd). This solution is not minimal in CH(Rd). Thus, any
limit function u(·, y) is not minimal in CH(Rd).

We conclude this section with some related problems. The following
conjecture was posed by the author in [15, Conjecture 3.6].

Conjecture 4.1. Suppose that P is a critical operator in M, then
the ground state ϕ is a minimal positive solution in the cone HP (M×R).

Note that if (2.11) holds true, then by Theorem 3.1, the ground
state is a Martin function in HP (M× R).

Example 4.3. Consider again the example in [16, Section 4]. In that
example −∆ is subcritical in M, λ0 = 0, and (1.4) and Conjecture 1.1
hold true. Hence, 1 is a Martin function in H−∆(M×R). On the other
hand, 1 ∈ exrC−∆(M) but 1 6∈ exrH−∆(M × R). So, Conjecture 4.1
cannot be extended to the subcritical “Liouvillian” case (see also [4]).

Thus, it would be interesting to study the following problem which
was raised by Burdzy and Salisbury [4] for P = −∆ and M ⊂ Rd.

Question 4.1. Assume that λ0 = 0. Determine which minimal
positive solutions in CP (M) are minimal in HP (M× R−).

§5. Uniform Harnack inequality and Davies’ conjecture

In this section we discuss the relationship between the parabolic
Martin boundary of HP (M × R−), the elliptic Martin boundaries of
CP−λ(M), λ ≤ λ0 = 0, and Conjecture 1.1 under a certain assumption.

Definition 5.1. We say that the uniform restricted parabolic Har-
nack inequality (in short, (URHI)) holds in HP (M×R−) if for any ε > 0
there exists a positive constant C = C(ε) > 0 such that

(5.1) u(x, t − ε)≤Cu(x, t) ∀(x, t)∈M×R− and ∀u∈HP (M×R−).

It is well known that (URHI) holds true if and only if the separation
principle (SP) holds true, that is, u 6= 0 is in exrHP (M × R−) if and
only if u is of the form e−λtvλ(x), where vλ ∈ exrCP−λ(M) [10, 13]. In
particular, the answer to Question 4.1 is simple if (URHI) holds.
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Lemma 5.1. (i) Suppose that (URHI) holds true, then for any s < 0

`+ := lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 (Lin’s condition).

(ii) Assume further that for some x0, y0 ∈ M and s0 < 0

`− := lim inf
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

≥ 1,

then any limit function u(x, y, s) of
kM

P
(x,y,tn+s)

kM
P

(x0,y0,tn)
with tn → ∞ does not

depend on s, and has the form u(x, y), where u(·, y) ∈ CP (M) for every
y ∈ M and u(x, ·) ∈ CP∗(M) for every x ∈ M.

(iii) If one assumes further (1.4), then Conjecture 1.1 holds true.

Proof. (i) By (URHI), if u ∈ exrHP (M × R−), then u(x, t) =
e−λtuλ(x), where λ ≤ 0. Consequently, for every u ∈ HP (M× R−)

(5.2) u(x, t + s) ≤ u(x, t) ∀(x, t) ∈ M×R−, and ∀s < 0,

and equality holds for some s < 0 and (x, t) ∈ M×R− if and only if
u∈CP (M). Clearly, (5.2) implies that

`+ := lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 ∀x, y ∈ M and s < 0,

which together with Lemma 2.1 implies `+ = 1.
(ii) At the point (x0, y0, s0) we have `− = `+ = 1, therefore,

(5.3) lim
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

= 1.

Consequently, for any sequence tk → ∞ satisfying

lim
k→∞

kM
P (x, y0, tk + τ)

kM
P (x0, y0, tk)

= u(x, τ) ∀(x, τ) ∈ M× R−,

we have u(x0, s0) = u(x0, 2s0) = 1, and therefore, u ∈ CP (M). The
other assertions of the lemma follow from Lemma 2.2. �

Remark 5.1. From the proof of Lemma 5.1 it follows that if (URHI)
holds true, then a sequence tn → ∞ satisfies

lim
n→∞

kM
P (x0, y0, tn + s0)

kM
P (x0, y0, tn)

= 1,
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for some x0, y0 ∈ M and s0 6= 0 if and only if

lim
n→∞

kM
P (x, y, tn + s)

kM
P (x, y, tn)

= 1 ∀x, y ∈ M and s ∈ R.

Corollary 5.1. Suppose that (URHI) holds true, then there exists

a sequence tn → ∞ such that limn→∞
kM

P
(x,y,tn)

kM

P
(x0,x0,tn)

= a(x, y) exists and

is positive for all x, y ∈ M. Moreover, a(·, y) ∈ CP (M), and a(·, y) is a
parabolic Martin function for all y ∈ M. For each x ∈ M the function
a(x, ·) satisfies similar properties with respect to P ∗.

Proof. Take s0 6= 0 and {tn} such that limn→∞
kM

P
(x0,y0,tn+s0)

kM

P
(x0,y0,tn)

= 1,

and use Remark 5.1 and a standard diagonalization argument. �
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